The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination.
نویسندگان
چکیده
In the adult mammalian brain, oligodendrocyte progenitors can differentiate into mature oligodendrocytes during remyelination. Mechanisms that regulate migration and differentiation of progenitors are of great importance in understanding normal development and demyelinating/remyelinating conditions. In a microarray analysis comparing adult and neonatal O4-positive (+) cells, we found that the tetraspanin KAI1/CD82 is far more highly expressed in adult O4(+) cells than in neonatal O4(+) cells (Lin et al., 2009). CD82 is a metastasis suppressor, and its expression is often downregulated or lost in the advanced stages of metastatic cancer. We hypothesized that CD82 could be a factor that restricts migration and promotes differentiation of maturing oligodendrocytes. Western blot analysis of isolated adult O4(+) cells confirms the elevated levels of CD82, which continues to be expressed as these become O1(+) in vitro. In the adult rat white matter, CD82 is coexpressed with CC1 and olig2 but not with NG2 or GFAP. Immature cells of the neonatal forebrain subventricular zone (SVZ) infected in vivo with a retrovirus that constitutively expresses CD82 do not remain immature but differentiate into either CC1(+) and MBP(+) myelinating oligodendrocytes in the white matter or zebrinII(+) astrocytes in the cortex. Their migration from the SVZ is severely restricted. In contrast, downregulation of CD82 in SVZ cells in vivo, using retroviral-expressed short hairpin RNAs (shRNAs), prevents their differentiation into myelinating oligodendrocytes. shRNA-expressing cells remained PDGF receptor alpha positive, olig2(+), or NG2(+) or became CC1(+) nonmyelinating oligodendrocytes or GFAP(+) astrocytes. CD82 thus appears to be a critical molecule in the regulation of oligodendrocyte progenitor migration and myelination.
منابع مشابه
CD82 blocks cMet activation and overcomes hepatocyte growth factor effects on oligodendrocyte precursor differentiation.
Mechanisms that regulate oligodendrocyte (OL) precursor migration and differentiation are important in normal development and in demyelinating/remyelinating conditions. We previously found that the tetraspanin CD82 is far more highly expressed in O4(+) OL precursors of the adult rat brain than those of the neonatal brain. CD82 has been physically linked to cMet, the hepatocyte growth factor (HG...
متن کاملProlonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system.
The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5' flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precur...
متن کاملSystematic Review of Pharmacological Properties of the Oligodendrocyte Lineage
Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors...
متن کاملAn oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation.
Molecular mechanisms that control oligodendrocyte myelination during mammalian central nervous system (CNS) development are poorly understood. In this study, we identified Zfp488, an oligodendrocyte-specific zinc-finger transcription regulator, by screening for genes downregulated in the optic nerves of Olig1-null mice. The predicted primary structure of Zfp488 is evolutionarily conserved in ve...
متن کاملEWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells.
Cancer metastasis suppressor KAI1/CD82 belongs to the tetraspanin superfamily and inversely correlates with the metastatic potential of a variety of cancers. The mechanism of KAI1/CD82-mediated metastasis suppression remains unclear. In this study, we found a M(r) 68,00 cell-surface protein physically associated with KAI1/CD82 and named it KASP: a KAI1/CD82-associated surface protein. Distincti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 36 شماره
صفحات -
تاریخ انتشار 2009